Nach mehrjähriger Pause wird der Teilchenbeschleuniger am Cern wieder gestartet. Mittels Protonenkollisionen erhoffen sich Forscher Erkenntnisse über die Gesetze des Universums.
Nach gut drei Jahren Wartungs- und Verbesserungsarbeiten wird die größte Forschungsmaschine der Welt wieder angeworfen: der Teilchenbeschleuniger der europäischen Organisation für Kernforschung (Cern) in Genf.
An diesem Freitag sollen die ersten beiden Protonenstrahlen in entgegengesetzter Richtung durch den unterirdischen Ring von 27 Kilometern Länge gejagt werden. Es dauert sechs bis acht Wochen, bis die Maschine auf Hochtouren ist. Erst dann können wieder Protonenkollisionen stattfinden, die Erkenntnisse über die grundlegenden Gesetze des Universums preisgeben sollen.
Hochspannung am Cern
Die Vorbereitungen laufen seit einigen Wochen rund um die Uhr. Bis zur letzten Minute herrscht in den Cern-Kontrollräumen Hochspannung. Der deutsche Cern-Forschungsdirektor Joachim Mnich sagte der Deutschen Presse-Agentur:
"Der muss auch oft Minuten vor dem Start noch abgebrochen werden, weil ein Problem auftaucht. Wir hoffen aber, dass alles glatt geht", sagte Mnich.
Mit dem Teilchenbeschleuniger wird die Zeit der Entstehung des Universums vor rund 14 Milliarden Jahren simuliert. Forscherinnen und Forscher beobachten bei den Kollisionen die Zerfallsprozesse und gewinnen Erkenntnisse über die kleinsten Bestandteile der Materie, die Elementarteilchen.
Nachweis des Higgs-Bosons
Unter anderem wurde am Cern 2012 erstmals das 40 Jahre früher theoretisch beschriebene Higgs-Boson nachgewiesen. Es trägt dazu bei, dass Elementarteilchen eine Masse haben.
Während der Abschaltung ist die Leistungsfähigkeit des Beschleunigers und der angeschlossenen Detektoren deutlich erhöht worden. Damit sind noch mehr Kollisionen möglich, rund 1.000.000.000.000.000 im Jahr, eine Billiarde, wie Mnich sagt.
Auswertung der Daten dauert oft Jahre
Nur eine von vielleicht 100.000 Kollisionen bringe aber Prozesse zum Vorschein, die eine nähere Analyse lohnen. Die Daten werden zwar innerhalb von Millisekunden gespeichert, die Auswertung dauere oft aber Jahre.
So war es etwa am US-Forschungszentrum für Teilchenphysik Fermilab, das Anfang April mit einer Sensation aufwartete: Aus mehr als zehn Jahre alten Daten hatten Physiker das W-Boson neu berechnet, das eine der vier Grundkräfte übermittelt, die das Verhalten der Materie im Universum bestimmen.
Widerspruch zum Standardmodell
Die Forscher stellten mit hoher Präzision fest, dass es schwerer ist als das Standardmodell der Teilchenphysik voraussagt. Dieses Modell beschreibt zwölf Materieteilchen und ihre Wechselwirkung.
Das W-Boson war 1983 am Cern entdeckt worden. Dort, hofft Mnich, können die Ergebnisse der Amerikaner in den nächsten Jahren bestätigt oder widerlegt werden. "Wenn das Ergebnis so stimmt, könnte dies ein Hinweis auf eine unbekannte Naturkraft sein, oder ein Hinweis auf zusätzliche Teilchen, die wir bislang nicht kennen", sagt Mnich.